RNN

Din

Background

Text Recogni Multilayer Perceptrons

Simple RNN

Exploding an vanishing gradients

RNN units

TanH

CDNN

Architectures

Applications

Recurrent Neural Network

Ding Liang

November 13, 2015

Contents I

RNN

Ding

Background

Text Recognitio Multilayer Perceptrons

Exploding and vanishing

RNN units

LSTM GRNN

Architectures

Application

1 Background

- Text Recognition
- Multilayer Perceptrons

2 Simple RNN

- Exploding and vanishing gradients
- 3 RNN units
 - TanH
 - LSTM
 - GRNN
- 4 Architectures
- 5 Applications

Text Recognition

How do we recognize this image?

Maybe we should segment like this, and feed each character image into a classifier like CNN.

But context information is missing. Any better solutions?

Text Recognition

RNN

Ding

Background

Multilayer Perceptrons

Exploding and vanishing

RNN units

TanH LSTM

Architecture

Application

also gives information.

Multiple sliding windows make a image sequence, there are relations among them. How do we take advanges of these relations?

Multilayer Perceptrons

RNN

Ding

Background
Text Recogniti
Multilayer
Perceptrons

Simple RNN
Exploding and
vanishing
gradients

RNN units

TanH

GRNN

11101110000411

 ${
m Applications}$

Figure: A multilayer perceptron. The output of an MLP depends only on the current input, and not on any past or future inputs. More suitable for pattern classification than for sequence labelling.

Simple RNN

RNN

Ding

Background

Text Recognition
Multilayer
Perceptrons

Simple RNN

Exploding and vanishing

RNN units

TanH LSTM

Architecture

MLP	RNN
$h = W^h x$	$h_t = W^{(hh)}\phi(h_{t-1}) + W^h x_t$
$y = W^y \phi(h)$	$y_t = W^y \phi(h_t)$
(h)	h. ◆
<u> </u>	<u> </u>
X	(Xc)

Unfold

RNN

Ding

Background

Text Recognition
Multilayer
Perceptrons

${\bf Simple~RNN}$

Exploding an vanishing gradients

D NIM:4...

m v

LSTM

Architecture

Exploding and vanishing gradients

RNN

Ding

Background

Text Recognitie Multilayer Perceptrons

_ . . .

Exploding and vanishing gradients

RNN units

TanH LSTM

Applications

Figure: Gradients vanish or explode through time. From Alex Grave.

Exploding and vanishing gradients

RNN

Ding

Background

Multilayer

Simple RNN

Exploding and vanishing gradients

RNN units

LSTM

Architecture

$$\frac{\partial E}{\partial W^{h}} = \sum_{t=1}^{S} \frac{\partial E_{t}}{\partial W^{h}}$$

$$\frac{\partial E_{t}}{\partial W^{h}} = \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial y_{t}} \frac{\partial y_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial h_{k}} \frac{\partial^{+} h_{k}}{\partial W_{h}}$$

$$\left\| \frac{\partial h_{t}}{\partial h_{k}} \right\| = \left\| \prod_{i=k+1}^{t} \frac{\partial h_{i}}{\partial h_{i-1}} \right\| \leq (\gamma_{W^{h}} \gamma_{\phi})^{t-k}$$

- Pascanu R, etc. On the difficulty of training recurrent neural networks[J]. arXiv preprint arXiv:1211.5063, 2012.
- 2 Bengio Y, etc. Learning long-term dependencies with gradient descent is difficult[J]. Neural Networks, IEEE Transactions on, 1994, 5(2): 157-166.

TanH

RNN

Ding

Background

Text Recognition
Multilayer
Perceptrons

Simple RNN

Exploding and vanishing gradients

RNN units

TopH

LSTM

Anabitoatus

LSTM (Long Short Term Memory)

RNN

Ding

Background
Text Recognition

Multilayer Perceptrons

Simple RNI Exploding and vanishing

RNN units

Architecture

Applications

LSTM (Hochreiter and Schmidhuber, 1997):

Advantage: avoid vanishing

Disadvantage: complex

Key idea

RNN

Ding

Background

Multilayer Perceptrons

ompie ani

Exploding and vanishing gradients

TanH

GRNN

Architecture

Applications

Memory cell: easy for information to just flow along it unchanged.

Gates

RNN

Ding

Background Text Recognition

Multilayer Perceptrons

Exploding and vanishing gradients

RNN units

GRNN

Architecture

Gates: a sigmoid neural net layer and a pointwise multiplication operation.

Control a value to flow through or not.

GRNN (Gated Recurrent Neural Network)

RNN

Ding

Background

Text Recognition
Multilayer
Perceptrons

Simple RNN

Exploding and vanishing gradients

RNN units

TonH

rann

GRNN

Architecture

Applications

GRNN (Cho et al. 2014)

Bidirectional RNN

RNN

Ding

Background

Text Recognition
Multilayer
Perceptrons

ompie ann

Exploding and vanishing gradients

RNN units

TanH

GBNN

Architectures

Stack RNN

RNN

Ding

Background

Text Recogniti
Multilayer
Perceptrons

Simple RNN

Exploding an vanishing

D NIN:4.

TanH

GRNN

Architectures

Applications

RNN

Din

Background

Text Recognitio Multilayer Perceptrons

Simple Kivi

Exploding and vanishing gradients

RNN units

TanH

GRNI

Architectures

- Text Recognition
- Language models
- Translation
- Video caption
- Image caption
- Video classification

Language models

RNN

Ding

Background

Text Recognition

Simple RNN

Exploding and vanishing

DMM unita

LSTM

Translation

RNN

Ding

Background

Text Recognition
Multilayer

Simple RNN

Exploding and vanishing

DMM unita

... ..

LSTM

Architecture

Image caption

RNN

Ding

Background

Text Recognition
Multilayer
Perceptrons

ompie miviv

exploding an vanishing gradients

D NINI:4...

LSTM

Architecture

Figure: A image caption generator.

RNN

Ding

Background

Multilayer Perceptrons

Simple RNN

Exploding and vanishing gradients

RNN units

LSTM

Architecture

Applications

Thanks!